
GRACE:
An Autonomous Robot for the AAAI Robot Challenge

Reid Simmons, Dani Goldberg, Adam Goode, Michael Montemerlo,

Nicholas Roy, Brennan Sellner, Chris Urmson
Carnegie Mellon University

Alan Schultz, Myriam Abramson, William Adams, Amin Atrash,
Magda Bugajska, Michael Coblenz, Matt MacMahon, Dennis Perzanowski

Naval Research Laboratory

Ian Horswill, Robert Zubek
Northwestern University

David Kortenkamp, Bryn Wolfe, Tod Milam
Metrica, Inc.

Bruce Maxwell
Swarthmore College

1. Introduction
The AAAI Robot Challenge was established four years ago as a “grand challenge” for mobile
robots. The main objectives of the Challenge are to (a) provide a task that will demonstrate a
high level of intelligence and autonomy for robots acting in a natural, peopled, dynamic
environment, (b) stimulate state-of-the-art robotics research to address this task, and (c) use robot
demonstrations to educate the public about the exciting and difficult challenges of robotics
research. The Challenge was designed as a problem that would probably need a decade to
achieve adequately. When the challenge was designed, it was anticipated that no single research
institution would have adequate resources to meet the Challenge on its own.

The Challenge task is to find the registration booth and register at the National Conference on
Artificial Intelligence, interact with other attendees, and give a technical talk on itself in an
assigned room, and at an assigned time. Ideally, the robot should be given no more information
than any other participant arriving in a new city to attend a major technical conference. In
particular, that means that the robot should not know the layout of the convention center
beforehand, and the environment should not be modified. Practically, however, the organizers
understand that compromises and flexibility will be necessary in order to get current state-of-the-
art robots to achieve the task.

There are a number of important technologies that are needed meet the Challenge. These include
localization in a dynamic environment, safe navigation in the presence of moving people, path
planning, dynamic replanning, visual tracking of people, signs, and landmarks, gesture and face
recognition, natural language generation, speech understanding, knowledge representation, and
social interaction with people. While researchers have worked on all of these areas, to a greater
or lesser extent, they all need further work to be robust in the environment that the Challenge
specifies. In addition, the technologies have not been fully with one another.

In August 2001, several of the authors agreed to join efforts to attempt the Challenge in its
entirety. We had all been working on technologies related to the Challenge, and felt that by
pooling our efforts we could do fairly well. In addition, we believed that the type of
collaborative work that was needed to pull this off would help advance robotics. We realized
that integrating hardware and software from five institutions would be very difficult. Our first
year goal, therefore, was to create an architecture and infrastructure that would enable us to
integrate our existing software into a system that could do a credible job with the Challenge task.
We all agreed that this would be a multi-year effort, and that in subsequent years we would build
on this year’s robot system.

In email and meetings during the winter of 2002, we formulated the basic approach and
architecture. We decided that there were several possible approaches: 1) we could bring our own
robots and each do part of the task, “handing off” from one to another, 2) we could use a
common hardware platform, but use our own, existing software, or 3) we could do a full-blown
hardware and software integration. We quickly agreed to try for option 3, but that option 2
would be a good fallback position. We spent the spring of 2002 converting existing software to
run on the common hardware platform (see Section 2) and common integration architecture (see
Section 3). In the end, we achieved somewhere between option 2 and 3, with the robot
successfully performing most of the major subtasks with little human interaction (see Section 4).
In July 2002, we traveled to the National Conference on Artificial Intelligence at the Shaw
Convention Centre in Edmonton, Alberta to take part in the Challenge.

2. Robot Hardware
GRACE (Graduate Robot Attending ConferencE) is built on top
of a B21 Mobile Robot built by RWI. GRACE has an expressive
computer-animated face projected on a 15” flat-panel LCD
screen, as well as a large array of sensors (see Figure 1). The
sensors that come standard with the B21 include touch, infrared,
and sonar sensors. Near the base is a SICK scanning laser range
finder that provides a 180-degree field of view.

GRACE has several cameras, including a stereo camera head on a
pan-tilt unit built by Metrica TRACLabs and a single color
camera with pan-tilt-zoom capability, built by Canon. GRACE
can speak using a high-quality speech synthesizer, and understand
responses using a wireless microphone headset (a Shure TC
Computer Wireless transmitter/receiver pair) and commercial
speech recognition software (IBM’s ViaVoice).

GRACE runs all software on board. Two 500 MHz processors, running Linux, run most of the
autonomy software. A Sony Vaio Picturebook laptop, running Windows, runs the speech
recognition software. In addition, there is a separate processor for the Metrica stereo head, and a
Linksys wireless access point to connect the robot to the outside world (for debugging,
monitoring, and for giving the talk).

1. The Robot GRACE

3. Software Architecture
One of the more difficult parts of the Challenge for us was determining how to integrate a vast
amount of software that had been developed by the participating institutions, mostly on different
hardware platforms. Early on, we decided to integrate everything onto a common hardware
platform (see Section 2), with different groups providing software “services” that would
interface to various pieces of hardware. The idea was that the “services” would abstract away
details of the actual hardware platform, making subsequent development easier. In particular,
Carnegie Mellon provided interfaces to the robot base (motion and localization), speech
generation, and computer-animated face, the Naval Research Laboratory provided speech
recognition and speech understanding interfaces, Swarthmore provided vision processing code
and control over the Canon pan/tilt/zoom camera, and Metrica provided stereo vision and control
over their pan/tilt head. In addition, Carnegie Mellon provided a simple graphical simulator so
that programs could be tested remotely, in advance of integration on the actual robot platform.

Software for the various subtasks was then built on top of these services. While the services, for
the most part, were task-independent, the software that ran the various tasks was a mixture of
task-independent and task-dependent code. In particular, the Naval Research Laboratory was
responsible for the part of the Challenge from when the robot entered the conference center until
it was near the registration booth, Carnegie Mellon was responsible for elevator riding, getting to
the registration booth (using Swarthmore’s vision system), registering for the conference, and
navigating to the lecture area, and Northwestern was responsible for having GRACE give its
talk. Figure 2 presents a high-level view of the software architecture and development
responsibilities. Details of the task-level software are found in Section 4.

2. GRACE Software Architecture Diagram

To facilitate distributed development, and to simplify testing and debugging, the GRACE system
was designed as a set of independent programs that communicated via message passing. The IPC
package (www.cs.cmu.edu/~IPC) was chosen for (nearly all) communications, because of its
expressiveness, ease of use, and familiarity by some of the teams (both Carnegie Mellon and
Metrica have used IPC in the past). As much as possible, all software was to be written in C or
C++ (using the GCC 2.96 compiler), running under Red Hat Linux 7.2. Exceptions included the
use of a Windows laptop to run ViaVoice (www.ibm.com/software/speech), the use of Allegro
Common Lisp for the Nautilus speech recognition system, the use of Swig and Python for the
elevator riding code. In addition, OpenGL, Perl and Festival
(www.cstr.ed.ac.uk/projects/festival) were used for the computer-animated face and speech
generation.

Finally, the computer-animated face and several of the task-level programs were written using
the Task Description Language (TDL). TDL is an extension of C++ that contains explicit syntax
to support hierarchical task decomposition, task synchronization, execution monitoring, and
exception handling (see www.cs.cmu.edu/~TDL and [Simmons & Apfelbaum, 1998]). A
compiler translates TDL code into pure C++ code that includes calls to a domain-independent
Task-Control Management library (TCM). The translated code can then be compiled using
standard C++ compilers and linked with other software. The idea is to enable complex task-level
control constructs to be described easily, enabling developers to focus more on the domain-
dependent aspects of their programs.

4. Doing the Challenge Task
As mentioned before, the Challenge is to have an autonomous mobile robot attend the National
Conference on Artificial Intelligence. More specifically, the Challenge rules
(www.cs.utexas.edu/users/kuipers/AAAI-robot-challenge.html) are to have the robot perform the
following subtasks:

1. Start at the front door of the conference center;
2. Navigate to the registration desk (ideally by locating signs and/or asking people and/or

following people – at this point, the robot does not have a map of the building);
3. Register: stand in line if necessary, have the robot identify itself, receive registration

material, a map of the conference center, and a room number and time for its talk;
4. Interact with other conference attendees (ideally recognize participants by reading

nametags or recognizing faces and schmooze – striking up brief personal conversations);
5. If requested, perform volunteer tasks as time permits, such as “guarding” a room or

delivering an object to another room;
6. Get to the conference room on time, using map received in step 3. This may involve

riding an escalator or elevator.
7. Make a two-minute presentation about its own technology, and answer questions.

For our first year of the Challenge, we decided to do all of the subtasks except #4 (schmoozing)
#5 (volunteer duties), and having the robot itself answer questions from the audience. In
addition, the human interaction in #2 was limited to interaction with one of the developers. In
future years, we will expand the scope to include all subtasks and enable arbitrary conference
participants to interact with the robot.

The next sections describe in more detail the major subsystems for each of the Challenge tasks.

4.1 Getting to the Registration Area

The first part of the Challenge is to have GRACE start at the entrance to the conference center
and find the registration area by interacting with a person. We used an off-the-shelf speech
recognition system, IBM’s ViaVoice, to convert from spoken utterances to text strings. The text
strings were then parsed and interpreted using Nautilus, NRL’s in-house natural language
understanding system, [Perzanowski, et. al., 2002; Perzanowski, et. al., 2001; Perzanowski, et.
al., 1998; Wauchope, 1994]. The output of this component is something like a logical form used
in standard predicate logic. This representation is then mapped to a message, or a series of
messages, which is then sent to other modules through an IPC interface. The mapping code was
written in TDL and it, and the IPC interface, was developed specifically for the Challenge.

To achieve a goal, we interleave linguistic and visual information with direction execution. If
there are no directions to be followed, GRACE performs a random walk until a human is
detected (for the Challenge this past year, human detection was done using a laser scanner; in
future years, we will incorporate both vision-based and stereo-based detection of people).
GRACE then engages the human in a conversation to obtain the directions to the destination in
question. Simple commands, such as “turn left” and “go forward five meters,” as well as higher
level instructions, such as “take the elevator” and “turn left next to the elevator” are acceptable
(note that in the Shaw Convention Centre, one needed to take an elevator down two flights from
the entrance in order to get to the registration area). In addition, GRACE can ask questions such
as “am I at the registration desk?” and “is this the elevator?” The task is completed once the
destination is reached, as determined by an explicit human confirmation or perception of the
goal.

Besides accepting speech input, GRACE can incorporate gestures, such as when a human points
to a given location. Initially, we were planning on using stereo-based vision to track both people
and their gestures, but this part of the software was not ready in time. Instead, we developed a
Palm Pilot-based interface, in which movements of the stylus on the screen were interpreted as
directional gestures.

Execution monitors run concurrently to ensure both safety and the integration of various required
linguistic and sensory information. For example, an explicit STOP command can be issued if
unforeseen or dangerous conditions arise. Also perception processing occurs concurrently with
interaction, allowing the detection of the destination or a human to be interleaved with other
information required to perform the task.

Two types of direction can be given. For a simple action command, such as “turn left,” we
assume that the command is executed immediately, before execution of any other instructions.
The second type of command is an instruction specifying an intermediate destination, such as
“take the elevator to the second floor.” In this case, an intermediate goal is instantiated (getting
to the elevator), and the logic is recursively applied to the new goal. Once all the available
directions have been executed and successfully completed, GRACE concludes that either she has
arrived at the destination or additional information is required to reach the goal. If GRACE
perceives the destination before all the directions are executed, the remaining ones are
abandoned, and she continues with the next goal.

Thus, if GRACE asks a human bystander “excuse me, where is the registration desk?” and the
human responds, “Grace, to get to the registration desk, go over there <accompanied by a

gesture>, take the elevator to the ground floor, turn right, and go forward fifty meters,” the
human’s input is mapped to a representation something like the following:
 Find Registration Desk:
 Find Elevator (ground floor);
 Go over there <gesture>;
 Turn right;
 Go forward 50 meters.

4.2 Riding the Elevator

As mentioned previously, the registration area in the Shaw Convention Centre is not on the same
floor as the street entrance. Our choices in addressing this were rather limited -- stairs are out of
the question, and escalators are no good either. The only viable alternative was to have GRACE
ride the elevator (Figure 3).

The first problem is to find the elevator itself. We assume that
the system has brought the robot near the elevator and pointed it
generally facing it. Thus, the laser should have a good view of
the elevator, and the robot will just need to perceive the unique
signature of the elevator doors in the laser readings and get itself
lined up with the doors. For instance, given that the robot is
positioned as shown in Figure 4, the system will see laser
readings like those in Figure 5.

While people can readily make out the shapes of the elevators in the laser points, having the
robot find elevators is unfortunately a bit more involved. The algorithm that we developed to
perceive elevators from laser scans is as follows:

• Straighten out the view of the world
• Find horizontal segments corresponding to bits of walls
• Filter the segments to eliminate noise and impossible conditions
• Merge small, adjacent segments into single segments
• Use feature matching to find possible elevators
• Filter out impossible elevators

This process is iterative and constantly running. The robot starts by attempting to fit straight lines
to points it sees. Using these lines, it comes up with a guess of how far off it is from facing the
wall. It then “mentally” rotates the points in the world and tries again. Fairly quickly, the walls
slide into place, and the system can detect the characteristic shape of elevator doors.

3. The elevator in Edmonton

5. Raw laser points 4. The simulation environment

The system uses a feature-
based recognizer to detect
elevators. Given the
transformation of the input
points, it is sufficient to
consider only horizontal
segments, within some
parameterized tolerances for
length and offset. In general,
the system looks for three
characteristic shapes. The first
shape is a standard elevator
inset (Figure 6). Because
elevators are generally of a
certain width, but also have a

deeper inset than office doors, the inset information can fairly reliably pick out an elevator from
an office or conference room. The second two shapes are similar to the first, but with some
information removed. While these are still valid elevator candidates, the robot would probably
need to move around a bit to get a better view of the elevator to make a final determination.
When these patterns are applied to the input data of Figure 5, the system detects the two
elevators shown in Figure 7.

One difficulty is that some patterns that are not
elevators can actually look similar to the patterns
in Figure 6. For instance, Figure 8 illustrates two
types of patterns that are not elevators. Note that,
in practice, some patterns that initially look good
(e.g., the two patterns on the right in Figure 6) may

actually turn out to be bad patterns when more information is acquired (by moving around).

After the robot detects an elevator, it gets into position and waits for the door to open. While the
laser can often see several elevators simultaneously, the robot cannot safely move fast enough if
a door opens too far away. Thus, the robot picks one elevator to wait in front of, and moves only
if it later decides that a better elevator pattern is nearby. Specifically, it waits for a while and,
after a timeout with no activity, searches and lines itself up again.

Once it has chosen an elevator and moved in front of it, the robot waits for some time for the
door to open. If the door opens soon enough (as shown by the laser readings), the robot navigates
in and turns around. When it has determined (by human interaction or other means) that it is on
the destination floor, it moves out of the elevator when the path is clear.

While the elevator-riding program worked well in testing, two main
problems were encountered when we arrived in Edmonton. First,
the area surrounding the elevator, and the elevator itself, were made
primarily of laser-invisible glass (see Figure 1). To solve this
problem, we discreetly put a single strip of stylish green tape all
around the area, just at laser height. This neatly solved the problem
and drew little attention from onlookers. The second problem was

7. The system, fully settled, with two elevators discovered

6. The three valid elevator patterns

8. Two invalid elevator patterns

9. The unusual pattern
at the Challenge

that the elevator pattern on the entrance floor of the convention center was quite unusual. The
elevator had a normal inset on its left, but abutted a long wall on its right (see Figure 9). The
solution was to adjust the feature-based recognizer to accept this pattern as a valid elevator.
Clearly, though, this type of tweaking is not a general solution to the problem.

With these problems solved, the elevator-riding portion of the Challenge went quite well.
However, there are a few issues still remaining. The most visible issue relates to the slowness of
the error correcting actions. For example, when the robot was misaligned in the elevator, it
waited for a long time before it decided to back up and try again. This needs some work to so it
can detect and recover from these kinds of errors much faster. Second, as pointed out above, a
more general recognizer needs to be developed – perhaps one that uses both laser and vision.
Finally, the robot needs to be able to detect for itself when it is on the correct floor. We are
currently developing a sensor, based on an electronic altimeter, to determine which floor the
robot is on.

4.3 Finding the Registration Booth

Once GRACE reached the registration area (Section 4.1), the next
task was to move up to the registration desk. This involved two
related subtasks: (1) searching for and visually acquiring the sign
indicating the registration desk; and (2) servoing to the desk guided
by a visual fix on the sign. The standard registration signs used at
the Shaw Convention Centre, which were LCD displays, were too
small and too dim to be seen by the robot’s cameras. Therefore, we
provided our own bright pink registration sign (Figure 10).

The Swarthmore Vision Module (SVM) [Maxwell et. al., 2002] provided the vision software
capabilities used for this task. SVM is a general-purpose vision scheduler that enables multiple
vision operators to run simultaneously and with differing priorities, while maintaining a high
frame rate. It also provides tightly integrated control over a pan-tilt-zoom camera, such as the
Canon VC-C4 that was used on GRACE. The SVM library includes a number of vision
operators, one of which (the color blob detector based on histograms) was used to find the pink
sign above the registration desk. In addition, each vision operator can function in up to six
different modes, including the PTZ_SET and LOOK_AT modes that were used with GRACE.
The PTZ_SET mode allows software external to SVM to set the position of the camera by
designating pan, tilt, and zoom parameters. SVM does not independently move the camera in
this mode. In the LOOK_AT mode, SVM is given the 3D location of the camera and object to
be tracked and sets the camera to point at the object. If the vision operator finds the object, SVM
moves the camera to track it, within a limited region around the designated location. The
software for servoing GRACE to the registration desk, including the interface to both SVM and
the lower-level locomotion software, was written using TDL.

Due to the configuration of the registration area at the Shaw Centre, GRACE was approximately
15-20 meters from the registration desk when she first reached a position to be able to see the
registration sign. The first phase of the task, searching for and finding the sign, was complicated
by the configuration of the registration area. Although the pink sign was 0.5 by 1.0 meters in
size, and designed to be relatively easy to find, at a distance of 15-20 meters, with the camera’s
zoom set to the widest angle (45 degree field-of-view), the sign was only a few pixels in size and

10. The Robot
Registration Sign

nearly impossible for SVM’s blob detection operator to find. In order to achieve more robust
sign detection, we increased the zoom (narrowing the field-of-view to 5 degrees), resulting in a
very meticulous, but slow, search process. During this phase, SVM was used in PTZ_SET mode,
giving full control of the camera to the TDL code. The shifting light levels in the registration
area, due to time and weather changes, also caused some difficulties. Histograms for the pink
sign trained at a certain time of day often failed several hours later. To ameliorate this problem,
we trained the histograms immediately before the start of the Challenge.

Once the registration sign was found, an approximate distance to the sign was calculated based
on the blob elevation measure provided by SVM. This, in turn, was used to calculate the 3D
location of the sign in the robot’s global coordinate frame. At this point, the robot oriented itself
to the sign and began moving towards the registration desk. The blob detection operator was
now changed to LOOK_AT mode, providing robust tracking of the sign during movement.
SVM provided updates on the position of the sign in the pan-tilt frame of the camera; these were
then translated into global coordinates by the TDL code, which provided both sign and robot
location updates to SVM, as well as corrected the movement of the robot. The TDL code also
adjusted the zoom used by SVM – as GRACE’s distance to the sign decreased, the field-of-view
of the camera was increased so as to maintain the entire sign within the image, thereby reducing
the chance of losing the sign and producing more accurate estimates of the its location. This part
of the task was considered completed when GRACE reached a distance of two meters from the
desk.

4.4 Standing in Line

Once GRACE was near the registration desk, she proceeded to register. First, however, she
waited in line (if there was one), like any polite conference attendee. GRACE uses a combination
of an understanding of personal space and range information to stand in line. GRACE uses the
concept of personal space to understand when people are actually in line, rather than milling
around nearby. People standing in line will typically ensure that they are close enough to the
person in front of them to signify to others that they are in line, while maintaining a minimum
socially acceptable separation distance. GRACE also uses this information to ensure that once in
line she does not make others feel uncomfortable by getting too close to them. The algorithm is
based on earlier work using stereo vision for detecting lines [Nakauchi & Simmons, 2002].

GRACE uses the SICK scanning laser range
finder to identify people and walls. Before each
movement, a laser scan is performed. Clusters in
the range data are grouped into three categories:
those that might be people, those that are likely
walls, and other (Figure 11). This classification
is based on the shape of the cluster. To identify
people, the algorithm looks for a small cluster of
data points (with a spread of less than ~50cm) or
a pair of small clusters close together. This
simple heuristic incorrectly classifies a variety of
objects that are not people as people, but these
“false positives” are generally irrelevant in the

11. GRACE’s perception of people in line

context of standing in line to register for a conference.

If a cluster is too big to be a person and the points in the cluster fall approximately along a line,
the cluster is considered to be a wall. Occlusions in the range data (as seen in Figure 11) are
compensated for by comparing wall clusters to one another to determine if a single wall segment
can explain them. If this is the case, then those clusters are combined to provide a better estimate
of the orientation and location of the walls.

The “stand in line” algorithm assumes that GRACE starts near the registration desk, and that the
closest “wall” is the front of the desk. Once the closest wall has been found, GRACE rotates
away from the desk and searches for the nearest person standing close to the registration desk.
This person is considered to be the “head of the line”. Once the head of the line has been
identified, the algorithm attempts to chain nearby people together using the notion of personal
space. Those that are too far from the person in front of them, or those who are not
approximately behind someone in line, are considered to be not in line. Once the line is found,
GRACE moves towards the back of the line, intermittently checking for more people in line.
Once at the back of the line, GRACE moves to a position behind the last person. At this point,
GRACE only considers the person immediately in front of her, maintaining the personal space
between the robot and that person. Once near the registration desk, GRACE maintains a stand-
off distance until the person in front leaves. When there are no more people in front of GRACE,
she drives to a set distance from the registration desk and then begins to register.

4.5 Registering

The objectives for this subtask were to develop an interaction system that was robust enough so
that a (relatively) untrained person could interact with it and to present an interface that was
natural enough so that the registrar and observers could interact with GRACE at least somewhat
as they would with a human. The specific task was for GRACE to obtain all the various
registration paraphernalia (bag, badge, proceedings), as well as the location and time of her talk.

Figure 12 illustrates the data and control flow for a typical interaction cycle with the robot. A
wireless microphone headset is used to acquire speech, which is then converted to text by
ViaVoice. ViaVoice has the ability to read in a user-specified BNF-style grammar, which it then
uses to assist in speech disambiguation. In fact, it will only generate utterances that are valid
under the loaded grammar. Obviously, there is an inverse relationship between the size of the
grammar and the recognition accuracy of ViaVoice (when presented with valid utterances). We
built our own grammar to cover all the potential utterances we could think of within the given
scope. Since the breadth of interaction involved in performing the registration task is rather
limited, we were able to achieve satisfactorily accurate recognition.

ViaVoice transmits the utterances that it recognizes as strings over TCP in its own proprietary
format. NRL developed a module, called UTT, which listens for transmissions from ViaVoice
and re-broadcasts them over IPC as “utterance” messages. UTT also has a text-based input
mode, which is useful for debugging. The text strings are then parsed by the utt2signal program.
utt2signal performs the same basic function as Nautilus, but is significantly more simple and
specialized. utt2signal is based on a Bison parser that was hand-generated from the ViaVoice
BNF grammar. It distills the utterances down to the primitives that we need to drive our
interaction and transmits the appropriate signals to the “expression” process (see below). In
addition, utt2signal is responsible for dispatching any raw information gleaned from the

utterances to the appropriate process. For instance, if the registrar tells GRACE the location of
her talk, utt2signal informs the navigation software of this.

The “expression” process controls the computer-animated face and the Festival speech
generation software. Users write interaction scripts that include facial expressions, quoted text,
pauses, conditional operators, choice operators, and most basic math and logic operations. The
scripting language allows the definition of macros, which consist of basic face movements,
utterances, non-face primitives (such as pauses), and other macros. Even more powerful is the
ability to create and execute hierarchical finite state machines (see Figure 13). The FSMs can
execute actions when entering a state and can transition based on signals received from other
processes (e.g., utt2signal – hence the name). Figure 14 shows a small sample of the script used
for the registration task.

Since utt2signal abstracts out the actual parsing, the FSM can concentrate on the content, which
decreases its complexity. In addition, execution time scales well with the size and number of
finite state machines. In the future, this will allow much more complex interactions to be driven
without worrying about computational requirements.

GRACE’s face (Figure 15) is one of the most important aspects of her ability to interact with
humans. It is used for both emotional expression and for simple gestures, since GRACE lacks
any conventional manipulators. The face is based on an implementation of the simple face in
[Parke & Waters, 1996]. It incorporates a muscle-level model of face movement to allow semi-
realistic face motions. It accepts muscle and simple movement commands from expression;
macros of these commands are built up within the “expression” process to allow easy access to
complicated expressions or gestures.

12. Information flow for

the registration task

13. Simplified FSM for the registration task

Example of expression definition
Expression definitions are of the form
DEFINE expressionName
{ say("<utterance>")
[one or more expression macros]
[lip synching macros]
}

For example:

DEFINE badgeYesPrompt
 { say("May I have my badge please?")
 [dhappy2]
 [pause(0.129) mm me mi ma mm mi ma msh mp me pause(0.079) msh mn]
}

Example of DFA / FSM

Inclusion of other FSM and expression definition files is
allowed for maximum flexibility
include "register.fsm"
include "mutter.pho.expr"

Define the initial and final states of a FSM
BEHAVIOR-MACHINE MutterMachine
 initial MM_Enter
 final MM_Final

BEHAVIOR MM_Enter
 # Transition immediately if either of these signals is received,
 # even interrupting speech in progress
 transition interrupted "speech:reset" MM_Final
 transition interrupted "control:stopMutter" MM_Final
 perform
 [# Serialize everything in []'s
 # First, choose something to say
 CHOOSE(
 mutter1,
 mutter2,
 mutter3),
 pause(2),
 removeTextBubble,
 slowNormal,
 smiley,
 # Then, choose how long to wait
 CHOOSE(
 pause(5),
 pause(15),
 pause(30))
]
 # Finally, do this all over again
 # This transition fires only when the preceding perform clause
 # has completed
 transition MM_Enter

There are no transitions out of this node, thus signaling the
termination of the FSM
BEHAVIOR MM_Final
 perform slowNormal

14. Sample expressions and FSM’s for the registration task

Last, but not least, is GRACE’s ability to generate speech. We use a version of Festival that was

modified to enable it to generate phonemes for a given
utterance, which are then processed to extract lip-synching
information. While, Festival performed admirably, overall,
there are two notable exceptions: it tends to speak in a
monotone and cannot handle acronyms. While it is possible
to embed pitch changes in strings sent to Festival, this was
too labor-intensive to take advantage of this year, and does
not tend to produce convincing speech, in any case.
Likewise, it is possible to embed phonetic pronunciations, to
deal with utterances such as “AAAI.”

There were a number of small, persistent problems with the
interaction. First, ViaVoice had trouble with short
utterances, often misinterpreting them as numbers. Since an
utterance of just numbers was parsed as a statement of the time of GRACE’s talk, this could
cause some confusion. However, GRACE was able to recover from such mistakes, due to the
structure of the driving FSM.

The other problem had to do with the disambiguation of pronouns and other generic statements.
GRACE disambiguates such statements as “here you go,” “no,” or “you have it” based on the
latest prompt that she gave (i.e., what state of the FSM she is currently in). However, if GRACE
prompted the registrar and the registrar began to respond, but ViaVoice did not complete
recognizing the utterance until after GRACE had timed out and begun the next prompt, GRACE
would believe that a non-specific statement was about the new prompt, even if she has only said
a syllable or two of it. This obviously caused some problems, as the potential existed for her
belief of the state of the world to get out of sync with reality, resulting in very unnatural
interaction.

4.6 Navigating to the Talk

After registering, the Challenge robots are allowed to use a map to navigate in the building.
Ideally, the robots would actually read the map given to them. GRACE, however, used a map
that she had built previously and was saved on disk. The map was used to help GRACE make
her way from the registration desk to the talk venue. The map-based navigation task was
comprised of three main technologies: map-building, localization, and navigation control.

The evening prior to the Challenge event, GRACE was driven around the convention center.
During this time, time-stamped odometry and laser range data were recorded to file. This data
was then used to build a map through a process called scan matching [Lu & Milios, 1997]. The
implementation of our scan-matching algorithm was adapted from a software package provided
by Dirk Hahnel at the University of Freiburg [Hahnel et. al., 2002]. Generating a map from laser
and odometry data is largely an automated process, although our implementation also allows the
user to correct misalignments after the scan-matching process. The output of the map-building
process was an 89.4 x 10.8 m occupancy grid map, with a resolution of 10cm per grid cell.

GRACE uses a probabilistic approach to localization called Markov Localization. The localizer
estimates a probability distribution over all possible positions and orientations of the robot in the
map given the laser readings and odometry measurements observed by the robot. This
probability distribution is approximated using a particle filter [Thrun et. al., 2000]. GRACE is

15. Grace’s Face

initialized with an approximate starting position, and the distribution of particles evolves to
reflect the certainty of the localizer’s position estimate.

As GRACE moves, the probability distribution is updated according to:

∫ −−−−⋅= 1111)(),|()|()(iiiiiii dsspassipsopsp η

where si is the pose at time i, ai-1 the last action, and oi the last observation.

Navigation was performed using a two-level system. The low-level system uses the Lane-
Curvature Method [Ko & Simmons, 1998] to convert commands in the form of directional
headings to motor velocity commands. The high-level planner consists of an implementation of a
Markov Decision Process planner [Burgard et. al., 1998; Konolige, 2000]. The planner operates
by assigning a positive reward to the goal location, and negative reward to poses close to
obstacles. The planner uses value iteration to assign a value to each cell; this value corresponds
to the future expected reward of each cell, as in the following equation:

+= ∑∑

==

||

1

||

1

)),|(|()()(max)(
A

k
iikj

S

j
jiai ssaspsVsRsV πγ

where R(si) is the immediate reward of robot pose si, and V(si) is the expected reward to be
maximized. The planner extracts the maximum-likelihood path by choosing from the start state
(the current pose of the robot as given by the localizer) successive states that maximize the
expected reward. The directional command passed to the low-level controller is just the direction
of the neighboring state with the highest expected reward.

During execution of the planned path, the planner also integrates sensor information, based on
the current pose estimate from the localizer, to make changes to the map. This allows the planner
to compensate for small errors in localization and changes to the environment that could
invalidate certain paths.

4.7 Giving the Talk

Once GRACE navigated to the lecture area (in the Exhibition Hall), she gave a talk about the
technologies that comprised her. GRACE’s talk-giving system is an attempt to scale behavior-
based architectures directly to higher-level cognitive tasks. The talk-giver combines a set of
behavior-based sensory-motor systems with a marker-passing semantic network, a simple parser,
and an inference network, to form an integrated system that can both perform tasks and answer
questions about its own ability to perform those tasks. It interfaces with the computer-animated
face and Festival speech generation systems to do the actual presentation.

The talk system is structured as a parallel network of logic gates and finite-state machines.
Inference rules in the system are compiled into a feed-forward logic network. This gives it
circuit semantics: the inputs of the network monitor the truth-values of premises as generated by
the sensory systems and the outputs of the network track the truth-values of conclusions in real-
time as the premises change. In effect, the entire rule base is rerun from scratch to deductive
closure at sensory frame-rates. Although this sounds inefficient, the rule engine can run a base
of 1000 Horn rules with 10 conjuncts each, updating at 100Hz (100 complete reevaluations of
the knowledge base per second), using less that 1% of the CPU. Using a generalization of
deictic representation called role passing, the network is able to implement a limited form of
quantified inference – a problem for previous behavior-based systems. Rules may be quantified

over the set of objects in short-term memory, provided they are restricted to unary predicates
(predicates of one argument).

The talk-giving system implements reflective knowledge – knowledge of its own structure and
capabilities – through two mechanisms: a marker-passing semantic network provides a simple
mechanism for long-term declarative memory, while role passing allows variables within
inference rules to be bound to behaviors and signals within the system. The former allows the
system to answer questions about its own capabilities, while the latter allows it to answer
questions about its current state and control processes.

The talk-giving system can follow simple textual instructions. When a human issues a command
such as “drive until the turn,” its simple parser, which is formed as a cascade of finite-state
machines, examines each individual word, binding the appropriate words to the appropriate
roles. In this case, the parser binds the drive behavior to the role activity and the turn?
sensory signal to the role destination. When it detects a stop (e.g., a pause), it triggers the
handle-imperative behavior, which implements the rules:

• If the signal bound to destination is false, activate the behavior bound to
activity.

• If destination is bound to a sensory signal and that signal is true, deactivate
activity and myself.

• If activity deactivates itself, also deactivate myself.

Since this behavior is parameterized by other behaviors, we call it a higher-order behavior, in
analogy to the higher-order procedures of functional programming languages. Other examples
are the explain behavior, which walks a subtree of the semantic network to produce a natural
language explanation of the behavior, and the demo behavior, which both explains and runs the
behavior. Role passing and higher-order behaviors are easily implemented using parallel
networks of gates and finite-state machines, making them a natural choice for the kind of
distributed, parallel processing environments often found on mobile robots. They are
implemented in GRL, a functional programming language for behavior-based systems that
provides many of the amenities of LISP, while statically compiling programs to a network of
parallel finite-state machines.

To give a talk (Figure 15), GRACE uses the Linksys wireless
connection to a laptop to open a PowerPoint presentation, reads
the text of each bullet-point, and uses keyword matching to find
an appropriate node in its semantic network. It uses a novel
distributed representation of a discourse stack to resolve
ambiguities, using only SIMD marker-passing operations.
Having determined the node to which the bullet-point refers,
GRACE uses spreading activation to mark the subtree rooted at
the selected node as being relevant. She then discusses the topic
by continually selecting and explaining the “highest priority”
relevant, unexplained, node. Priorities are computed off line
using a topological sort so that if topic A is required to
understand topic B, A will always have higher priority.

15. GRACE gives a talk

By continually reselecting the highest priority relevant, unexplained node using circuit
semantics, the system can respond instantly to changes in relevance when, for example, an
unexpected contingency during a demonstration opens up an opportunity to explain a feature. It
also allows the robot to cleanly respond to, and return from, interruptions without replanning.
However, such topic shifts require the generation of transition cues such as “but first …” or
“getting back to …”. The talk code detects these abrupt topic shifts by tracking the current
semantic net node, its parent node, and the previous node and parent. By comparing these, the
system can determine whether it has moved locally up, down, or laterally in the hierarchy, or
whether it has made a non-local jump to an unrelated node. It then generates the appropriate
transition phrase.

The talk-giver is far from fluent. It is not intended to demonstrate that behavior-based systems
should be the implementation technique of choice for natural language generation. Instead, it
shows that parallel, finite-state networks are much more powerful than previously believed.
Moreover, by implementing as much of a robot’s control program as possible with these
techniques, we get efficiency, easy parallelization, and flawless synchronization of the
knowledge base with the environment.

5. Discussion and Summary
On Wednesday July 31, GRACE attempted the AAAI Robot Challenge, in front of hundreds of
interested onlookers and the media. GRACE successfully completed each of the subtasks
described above, with a minimal amount of human intervention. GRACE took about 60 minutes
to travel from the entrance of the Shaw Convention Centre, down the elevator, to the registration
desk, and then to the lecture area in the Exhibition Hall. This compares to about 20 minutes
taken by the other entry that attempted the complete Challenge – the CoWorker built by iRobot –
but that robot was remotely teleoperated by a person in the convention center.

While each of the subtasks was successful, and GRACE successfully completed an end-to-end
run, each subtask also demonstrated need for improvement. Probably the most critical problem
was based on our use of ViaVoice for speech recognition. ViaVoice has troubles with
background noise and stress in the speaker’s voice. It can recognize only grammatically correct
sentences, and returns only the best parse, whereas we would like to get back several of the most
probable parses and use speech understanding to determine which is most likely given the
context. To try and remedy this, we are in the process of switching to Sphinx for speech
recognition (see http://www.speech.cs.cmu.edu/sphinx). This might also enable us to move to an
on-robot microphone system, which would eliminate the need for the speaker to don a wearable
microphone. This would enhance GRACE’s appearance as an independent entity and enable
random interaction.

While the human-robot interaction (aside from the speech recognition) worked relatively well,
there were areas for improvement. For instance, gesture recognition, which works on the NRL
robots, was not successfully integrated in time for GRACE. In addition, NRL has developed an
ability to talk about semantic entities in the environment (e.g., “turn down the next corridor”),
but the ability to recognize these features is not yet integrated on GRACE. These capabilities
would make interaction much more natural. For the elevator-riding task, the robot needed to
have a person hold the elevator doors open, in order to give it time to enter and exit before the
doors closed. Part of this was due to the fact that the robot did not recognize changes to the

environment fast enough. Also, the robot also did not have any way of determining which floor
it was on (we are working on this by developing an electronic altimeter – see Section 4.2).

Visual servoing to the registration desk suffered from several problems. First, as described in
Section 4.3, changes in lighting could cause the recognition algorithm to fail, and so the system
had to be retrained on a periodic basis. Second, when the robot was far away, the sign appeared
too small to be readily identified; but, zooming in gave a very small field of view, which slowed
the search for the sign considerably. To deal with this, we are considering a multi-scale
approach, where the robot first does a coarse scan at a wide field of view, and then checks
possible sign locations more thoroughly by zooming in. Finally, if the robot moved quickly, the
tracker often lost sight of the sign. This can also probably be addressed by adjusting the zoom.

During testing, the standing in line code was very reliable. During the Challenge itself, the robot
barged into line, nearly hitting one of the judges. The cause was traced to a bug in the software
that determined the robot’s trajectory to the end of the line. The software worked in many tests,
but later it was determined that it only worked for lines of one or two people (the maximum we
had tested on), but at the Challenge there were five people in line. Needless to say, that bug has
since been fixed. The task of registering had problems with ViaVoice, as described above. Also,
that task used a different grammar from the “getting to the registration area” task. During the
Challenge, we forgot to load the correct grammar, which meant that the robot had very little
chance of interacting correctly. Fortunately, this was noticed, and corrected, part way through
the task.

The navigation part of the task suffered a bit from getting lost. The causes were twofold: 1) the
environment had changed significantly from when the map was built the night before (extra
tables were set up for food), and 2) there were hundreds of people around the robot, making it
hard for the sensors to see the walls and other static structures that had been mapped.
Unfortunately, some human intervention was needed to relocalize the robot. We need to look
much more carefully at how to do map-based navigation in environments that are very different
from when the map was first made. Finally, the talk-giving task worked flawlessly. For next
time, however, we plan to have the robot demonstrate various aspects of itself – this is currently
supported in the talk-giving software, but there was not enough time to develop the
demonstrations themselves and integrate them into the talk.

Our plans for the 2003 Challenge are threefold. First, we will work to make the current
capabilities much more robust. Second, we will integrate the capabilities more tightly. In
particular, we will have the robot itself determine when to transition between subtasks. Third,
we will add new capabilities. We intend to have vision-based and stereo-based people detection
and tracking, people following, gesture recognition, nametag reading, and face recognition. We
plan to incorporate capabilities for the robot to “schmooze” with other participants and to answer
its own questions after the talk. We would like to have the robot perform its own crowd control.
In the hardware domain, it would be desirable to add more physical flexibility to GRACE’s face,
such as putting the screen on a pan/tilt unit. Finally, there is the possibility of bringing another
robot, and have a team trying to attend the conference.

References
[Burgard et. al., 1998] W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D .Schulz,

W. Steiner, and S. Thrun. “The Interactive Museum Tour-Guide Robot.” In Proceedings of the
AAAI Fifteenth National Conference on Artificial Intelligence, 1998.

[Hahnel et. al., 2002] D. Hahnel, D. Schulz, and W. Burgard. “Map Building with Mobile Robots
in Populated Environments.” In Proceedings of Conference on Intelligent Robotics and
Systems, 2002.

[Ko & Simmons, 1998] N.Y. Ko and R. Simmons, “The Lane-Curvature Method for Local
Obstacle Avoidance.” In Proceedings of Conference on Intelligent Robotics and Systems,
Vancouver, Canada, 1998.

[Konolige, 2000] K. Konolige. “A Gradient Method for Realtime Robot Control.” In
Proceedings of Conference on Intelligent Robotic Systems, 2000.

[Lu & Milios, 1997] F. Lu and E. Milios. “Globally Consistent Range Scan Alignment for
Environment Mapping.” Autonomous Robots, 4:333-349, 1997.

[Maxwell et. al., 2002] B.A. Maxwell, N. Fairfield, N. Johnson, P. Malla, P. Dickson, S. Kim, S.
Wojtkowski, T. Stepleton. “A Real-Time Vision Module for Interactive Perceptual Agents.”
Machine Vision and Applications, to appear 2002.

[Nakauchi & Simmons, 2002] Y. Nakauchi and R. Simmons. “A Social Robot that Stands in
Line.” Autonomous Robots, 12:3 pp.313-324, May 2002.

[Parke & Waters, 1996] F. Parke and K. Waters. Computer Facial Animation. A.K. Peters, Ltd.,
December 1996, ISBN 1-56881-014-8.

[Perzanowski et. al., 1998] D. Perzanowski, A.C. Schultz, and W. Adams. “Integrating Natural
Language and Gesture in a Robotics Domain.” In Proceedings of the International Symposium
on Intelligent Control, IEEE: Piscataway, NJ, pp. 247-252, 1998. [Simmons & Apfelbaum,
1998] R. Simmons and D. Apfelbaum. “A Task Description Language for Robot Control.” In
Proceedings of Conference on Intelligent Robotics and Systems, Vancouver, Canada, 1998.

[Perzanowski et. al., 2001] D. Perzanowski, A.C. Schultz, W. Adams, E. Marsh, and M.
Bugajska. “Building a Multimodal Human-Robot Interface.” In IEEE Intelligent Systems,
IEEE: Piscataway, NJ, pp. 16-21, 2001.

[Perzanowski et. al., 2002] D. Perzanowski, A.C. Schultz, W. Adams, W. Skubic, M. Abramson,
M. Bugajska, E. Marsh, J.G. Trafton, and D. Brock. “Communicating with Teams of
Cooperative Robots.” Multi-Robot Systems: From Swarms to Intelligent Automata, A. C.
Schultz and L.E. Parker (eds.), Kluwer: Dordrecht, The Netherlands, pp. 185-193. 2002.

[Thrun et. al., 2000] S. Thrun, D. Fox, W. Burgard and F. Dellaert. “Robust Monte Carlo
Localization for Mobile Robots.” Artificial Intelligence, 101:99-141, 2000.

[Wauchope, 1994] K. Wauchope. Eucalyptus: Integrating Natural Language Input with a
Graphical User Interface. Tech. Report NRL/FR/5510-94-9711, Naval Research Laboratory:
Washington, DC, 1994.

